If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/2)x+x^2-22=0
Domain of the equation: 2)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x^2+(+3/2)x-22=0
We multiply parentheses
x^2+3x^2-22=0
We add all the numbers together, and all the variables
4x^2-22=0
a = 4; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·4·(-22)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{22}}{2*4}=\frac{0-4\sqrt{22}}{8} =-\frac{4\sqrt{22}}{8} =-\frac{\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{22}}{2*4}=\frac{0+4\sqrt{22}}{8} =\frac{4\sqrt{22}}{8} =\frac{\sqrt{22}}{2} $
| 3/4p=21 | | 8/3c−2=2/3c−12 | | 49=7-5+1x | | -7(t-2)-(t+9)=4 | | 275+d+1091=12 | | 38c−2=32c−1 | | 2x^2+6x-81=0 | | 4-5v=v-8 | | m^2=148 | | 6=t/2 | | (1+2)÷3=x-5 | | 4x-1=2x+7x | | 6x+4-x=20-3x | | x+5/2=11 | | -2(4n+1)=8 | | ×-2=2x-4 | | 25/3=p/3 | | 15/3=8x+2(-8x) | | 5(x+2)=2(x+2)+3x | | 12x-14+10x=180 | | 56=8+1x-5x | | 3x+6x=25-7 | | 3(7/3x+4/3)-2x+8=5x+12 | | 3x-12=x^2-4x+3 | | 10+5/7x=25 | | -4=2(x-3)+4 | | 6x+2=16-3x | | 6.5y=3 | | -4=(x-3)+4 | | b-9=6b=30 | | 32+1x=50 | | -9+6g=-3g |